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The Equilibrium Shape of a Two-Dimensional Crystal 
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By applying rather standard techniques for equilibrium crystal shapes (Wulff 
construction), we derive a construction for the equilibrium shape of a 2D crystal 
grown between two parallel plane substrates. The critical distance of the 
substrates at which this crystal splits into.two parts is computed as a function 
of the wall free energy of the substrates. This may open new perspectives for the 
measurement of wall free energies. 
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liquid bridge; wall attractions. 

1. INTRODUCTION 

This paper  is devoted to the s tudy of the shape of a crystal  of phase B that  
grows between two parallel  p lanar  substrates  and is in equi l ibr ium with a 
sur rounding  phase A. A great  variety of equi l ibr ium shapes in the presence 
of substrates,  namely the Win t e rbo t t om and Summer top  construct ions,  has 
a l ready been discussed in ref. 1. However ,  those construct ions work only 
for scale- invariant  si tuations.  In the case of two parallel  substrates,  a 
Wi n t e rbo t t om const ruct ion  does not  work in general:  the resulting shape 
solves the problem of minimal  free energy only if it may  be di lated so that  
it fits at the time the distance of the walls and the given volume, which is 
quite a par t icular  case. In the present  note we show how the idea of the 
Win te rbo t tom and Summer top  construct ions  may  be extended to the case 
of two paral lel  substrates:  a new geometrical  construct ion is derived to 
compute  the shape of these crystals. 
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As a by product of our analysis, we have found a new interesting way, 
to our knowledge, t2~ to measure wall free energies. Indeed, a droplet of 
fixed volume V that wets two parallel substrates splits into two parts if 
the distance between the substrates becomes large than a certain critical 
distance de(V). In the present note we show how to compute de(V) as a 
function of the wall free energies. This opens new perspectives to measure 
wall free energies in a partial wetting regime by using liquid bridges 
and measuring de(V). It should be noticed that liquid bridges between 
completely wet substrates have already been used to measure surface 
tensions)3 51 Complementary to those methods, we thus propose to use a 
liquid bridge of prismatic shape in a partial wetting regime. 

2. RESULTS 

Consider in two dimensions a crystal of B between two parallel planar 
substrates, in equilibrium with a surrounding phase A. The corresponding 
A/B interface is composed of two pieces which are usually at a macroscopic 
distance from each other. The equilibrium shape should then be given by 
two pieces of the equilibrium shape of a crystal of B surrounded by A, WAs 
as indicated in Fig. 1, or a bubble of A surrounded by B (Wulff shapes). 

For anisotropic media which can be described by lattice models, it 
is known that the contact angles should satisfy the generalized Young 
relation) 6~ More precisely, if we denote by gAs(O) the interfacial tension 
between A and B for an interface which makes an angle 0 with the horizontal 
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Fig. 1. The construction of the equilibrium shape of a crystal that grew between two parallel 
substrates for the case of large wall attractions (zJa > 0). The corresponding Young relations 
imply acute contact angles, hence the resulting crystal shape is concave. 
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axis, and by 0,, (Od) the contact angle of the A/B interface with the upper 
(lower) substracte U(D), the contact angles should satisfy 

and 

trAs(~+O,).cos(Tt+O,,)--a'As(rc+O,) .s in(n+O,)=trsu--trAv (1) 

aAS(0d)' COS Od-- a'As(Od)" sin Od = a AO -- trso (2) 

where we use tres to denote the free energy contribution per unit area of 
a substrate S covered by the phase P. If A and B are fluids, we have an 
isotropic surface tension, hence tr]s vanishes and (1) and (2) become the 
well-known Young relations. 

It is interesting to focus on the geometrical meaning of these equations. 
Consider the crystal of B within A. Its equilibrium shape W.~s is given 
by the associated Wulff construction. Let 0WAs denote the boundary of 
this region WAS. It is known that the points (x ,y)  which belong to this 
boundary are given by 

x(O) = a As(O) sin(0) + a'As(O) cos(0) (3) 

y(O) = cr ~s(O) cos(0) - a'~s(O) sin(0) (4) 

where 0 denotes the angle of the tangent to the boundary OWAn at the 
point (x, y). Let then 

ZI u t7 = tT A U - -  f f  B U 

z i  d O" = G A D  - -  O'BD 

zia= zi,a + Aaa 

Let us first discuss the case Aa > 0. According to the Young relations (1) 
and (2) and their geometrical interpretation, to obtain the sought equi- 
librium shape, one has to cut WAs by two vertical lines at the heights zi,tr 
and - A u g  to represent the lower and the upper substrates, respectively. 
We shall use C~ (Cr) to denote the left (right) component of the inter- 
section of 0WAs with the strip { (x, y) e ff~2[Ada < y < ziua }. The vertical 
size of Ct and Cr is zig. To obtain the two components of the surface of the 
sought equilibrium crystal that grew between two walls separated by a 
distance d, one has to rescale C, and C~ by a factor d/Aa. The rescaled 
curves will be denoted by C a and C a. After rescaling, one has to translate 
them horizontally so that C a will be placed to the right of C a and the 
volume between them will be equal to V. Hence we obtain a droplet given 
by two concave A/B interfaces. 
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If  zla < 0, the sought equilibrium shape is composed analogously by 
the Wulff shape WBA, which has to be cut by two horizontal lines at the 
heights ~aa and - 3 u a .  Similarly as in the preceding case, one takes those 
pieces of WBa which lie between those horizontal lines, rescales them by a 
factor -d/,Ja, and translates them horizontally to satisfy the fixed-volume 
constraint--but without exchanging the left and the right ones. The result 
is a convex droplet. 

Of course, our construction leads to a physical solution only if the two 
components of the equilibrium shape do not touch or cross each other. 
This gives rise to the existence of a critical length de(V) above which there 
exists no droplet of volume V that is in contact with both substrates. At 
this critical length, the two components of the surface of our construction 
touch each other, so that the droplet splits into two pieces. Hence the 
critical length de(V) is defined by the condition 

de(V) = Aax//-V (5) 

where Wc is the volume of the droplet that is constructed by shifting C/ 
about a distance of aaB(rc/2)+aaB(--Tt/2), so that it touches Cr in one 
point (cf. Fig. 2). 

We have 

w~ = .4. .  oAn ~- + .~,,, -_+.,,,,. w(y) dy 
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Fig. 2. The definition of W~. The curve Ct has been shifted to the right about a distance 
a,4s(n/2) + gaB(-~/2)  so that C~ and C, touch each othner and the resulting droplet splits 
into two disconnected parts. 
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where w(y) is the length of the intersection of WAs with a horizontal  line 
at the height y. For  the case of a liquid [i.e., gAs(O) = ~ = const-I, we have 
a spherical Wulff shape with w(y) = 2(a 2 -y2 )u2 .  For  IV,. we get 

[ (Au--~a~-f(-Aa'------~a~lf\ cr / \ ty / 3  (6) Wc= 2a. d a - - a  2 

where the function f is defined as f ( t ) =  - a r c c o s  t + t(1 - t 2 )  1/2. In Fig. 3 
we display the wall a t t ract ion of two identical substrates (A ,a  = Aaa ) as a 
function of the critical distance for the case of water. 

As an application, let us ment ion that  the results presented above 
may also be applied to a droplet  modeled by an Ising ferromagnet  in an 
horizontal  strip 7/• {I ..... d}, where the interaction with the walls is 
represented by an external field which is equal to a real pa ramete r  a if the 
lattice site i = (i~, i2) is such that  iz = 0 or iz = d and zero elsewhere. Phases 
B and A are represented by positive and negative density of magnetization,  
respectively. Let fl be the inverse temperature  and let J be the coupling 
constant. The wall at tractions have been computed  ~71 as a function of the 
field a; one has 

, Fcosh2(2flJ) oJ ~ / o ~ ]  
Adtr(a) = f l -  arcosh I_ 
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Fig. 3. The wall a t t ract ion A.cr of two parallel  walls of identical  material ,  d . a  = AaO, as a 
function of the critical length, where a droplet  splits into two parts. We plot ted AMr for the 
case of pure water  with cr = 70 N m - I  for pr ismat ic  droplets  of cross sections 100 mm 2 (full 
line) and  25 m m  z (dashed line). 
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where 

o9 = e2pS[ cosh (  2f lJ)  - co sh (  2ctflJ) ] / s in(  2 f lJ)  

For the Ising Wulff shape we have c8'9) 

w ( y )  = 2fl - l  a r c o s h [ c o s h 2 ( 2 f l J ) / s i n h ( 2 f l j )  _ cosh(yfl)] 

Hence W c and d,. may be computed numerically, which allows a full 
description of the equilibrium crystal. The graph of the wall attraction as 
a function of the critical distance obtained for the Ising ferromagnet is 
qualitatively the same as the graph shown in Fig. 3. 

In general, the critical length dc may be computed as a function of the 
wall free energies once one knows the surface tension as a function of 
the inclination angle. This might be used for an alternative aproach to 
determine wall attractions by measuring the critical length where a con- 
cave droplet splits into two convex droplets. Let us finally comment on 
the corresponding experimental conditions: to apply our two-dimensional 
results directly, one has to use a liquid bridge formed by a prismatic 
droplet, or for isotropic liquids, one may use the fact that the correspond- 
ing shape is rotationally invariant and thus replace the volume V which 
appears in our formulas by V/2n.  

3. O U T L I N E  OF THE P R O O F  

For completeness we present here the main ideas of the proof of the 
validity of our construction. We shall concentrate on the case ,4tr > 0. 

The main ingredients of the proof are the following. 
Let ff/,~B be that part of WAB which lies between the horizontal lines 

at the heights -z la t r  and A,tr (an analog of the Winterbottom construction 
for two walls) and let I ff'Anl be its volume. The free energy of a bubble of 
phase A surrounded by phase B of fixed volume 

d 2 
v *  = I ff'~el (A~)2 (7) 

is minimized by ff'AB after rescaling it by a factor d/ArT. Here (7) ensures 
that there exists a rescaling factor by which the Winterbottom shape IVAA 
may be dilated at the same time to the wall distance and to the fixed 
volume V*. The validity of this construction may be proved in the same 
manner as the Wulff construction ~~ and the Winterbottom construction 
for nonparallel walls, t~) 
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A second ingredient of the proof is the fact that the free energy of a 
unit-volume Winterbottom droplet equals twice the square root of the 
volume of the nonrescaled Winterbottom shape, c'~ [For  instance, the free 
energy of a bubble of phase A of volume V* which is in contact with both 
substrates U and D and the shape of which is given by if'As equals 
21 ff'Asl~/2(V*)l/'-.] From this we obtain the inequality 

F,~su>>.FAsou for A a > 0  (8) 

where we use FABu (FAnov) to denote the free energy of a unit-volume 
Winterbottom bubble of phase A surrounded by phase B and in contact 
with the substrate U (the substrates U and D). As we supposed that Aa > 0, 
we shall use the fact that the free energy of a bubble of phase A of volume 
V* takes its minimum on the shape if'An to prove the validity of our con- 
struction. Since the surface of a droplet that is in contact with the two walls 
plits into two components, we may vary them independently. The validity 
of our construction is proved if we show that the free energy of all droplets 
with a fixed right (left) component is minimized by the droplet, the left 
(right) component of which is given by C d (ca). We have to minimize the 
free energy 

F(F) = I~, ~ ~B(O(I)) d! + It, ~ ~B(O(I)) all- (ur - u , ) ( , ~ , : )  - (dr - d ,)(A : )  

Here we used ur to denote the x coordinate of the point where Fr touches 
the upper substrate. The real numbers ul, d~, and dr are defined 
analogously. The idea of the proof is to consider the left component Ft of 
a given droplet F as the right part of the surface of a bubble F*  of phase 
A of volume V* = I ff'ABI �9 (diAry) 2 [cf. (7)] surrounded by phase B the left 
part of which is equal to C a (cf. Fig. 4). 

For the free energy F*(F*) of the droplet F*  we have 

f / .  

F*(F*) = Jd~ ~B(O(l)) dl + Jra As(O(l)) dl + (uz-u*)( A.a) + (dt-dt*)(Aatr) 
I 

(9) 

One may easily convince oneself that, since we keep Fr fixed, F*(F*)-  
F(F) is a constant. For the same reason, fixing the volume of the drop F 
is equivalent to fixing the volume of the droplet F*. Hence the free energy 
of F with fixed volume V is minimized if the free energy of F*  with fixed 
volume V* is minimized, i.e., when F*  is equal to the d/Aa times rescaled 
shape if'As. Thus, the free energy of all droplets F with fixed Fr is minimized 
by the droplet for which Ft- -  C~.d 
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Fig. 4. Illustration of the proof of our construction for the case z/a > 0. The left part of the 
surface of a given crystal is considered to be part of the surface of a bubble of the fluid phase 
A surrounded by the condensed phase B. The volume of this bubble is fixed and the second 
part of the surface of this bubble is considered to be a part of the Winterbottom shape of such 
a bubble for the case of parallel substrates. Hence, to minimize the free energy, F t must also 
be a part of that Winterbottom shape. 

Up  to now this argument  works only if the left part of  F does not 
intersect the left part of F*,  so that F*  forms one droplet. In the opposite 
case we have to show that F is not  the minimal droplet. Let us discuss the 
simplest case of only one intersection where the curve F touches the lower 
and upper substrates to the left and to the right of Fz*, respectively. We 
shall again use (9), but to do this, we have to interpret F*  in a different 
way. Namely, that part of Fi that lies to the left o f / ' / *  forms together with 
a part of F~* a droplet of 'phase B surrounded by phase A that wets 
partially the lower substrate (cf. Fig. 5). We shall use VB to denote its 
volume. This corresponds to the fact that d~-d~* becomes negative, hence 
the term (d l -d l* ) (aAo- t r so )  in (9) should be interpreted as the free 
energy contribution of a part of the substrate D of length dp - d~ covered 
by phase B. That part of  F~ which lies at the right to /'1" forms together 
with Ft* a droplet of phase A surrounded by phase B that wets partially 
the upper substrate. To denote its volume, we shall use PA. We have 
V * =  V A -  VB. The free energy, of those two droplets may be estimated 
from below by the free energy of the according Winterbot tom droplets. 
We have 

F*( F* ) >t F Anu( V A) I/2 '{" FnAo( VB) 1/2 > F Anou( V* ) I/2 = 21WABI 1/2( V , ) I / 2  

The last inequality follows from the inequality (8) and the fact that V * =  
VA - VB < V,~. Hence the free energy of F*  is larger than the minimal free 
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Fig. 5. Illustration of the case of F I intersecting the curve F~*. We interpret the free energy 
of F* as the sum of the free energies of a crystal of B surrounded by A and a bubble of A 
included in B. 

energy of a bubble of phase A and fixed volume V*. In view of (9), this 
implies that F is not the equilibrium droplet. The case of more than one 
intersection may be treated in a similar way. 
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